Copied to
clipboard

G = C2×C525C8order 400 = 24·52

Direct product of C2 and C525C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C2×C525C8, C102.7C4, C102(C5⋊C8), (C5×C10)⋊5C8, C5214(C2×C8), (C2×C10).7F5, C10.25(C2×F5), C526C4.9C4, C22.2(C52⋊C4), C526C4.24C22, C53(C2×C5⋊C8), C2.3(C2×C52⋊C4), (C5×C10).38(C2×C4), (C2×C526C4).10C2, SmallGroup(400,160)

Series: Derived Chief Lower central Upper central

C1C52 — C2×C525C8
C1C5C52C5×C10C526C4C525C8 — C2×C525C8
C52 — C2×C525C8
C1C22

Generators and relations for C2×C525C8
 G = < a,b,c,d | a2=b5=c5=d8=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b2, dcd-1=c3 >

Subgroups: 316 in 60 conjugacy classes, 26 normal (10 characteristic)
C1, C2, C2, C4, C22, C5, C5, C8, C2×C4, C10, C10, C2×C8, Dic5, C2×C10, C2×C10, C52, C5⋊C8, C2×Dic5, C5×C10, C5×C10, C2×C5⋊C8, C526C4, C102, C525C8, C2×C526C4, C2×C525C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C2×C8, F5, C5⋊C8, C2×F5, C2×C5⋊C8, C52⋊C4, C525C8, C2×C52⋊C4, C2×C525C8

Smallest permutation representation of C2×C525C8
On 80 points
Generators in S80
(1 69)(2 70)(3 71)(4 72)(5 65)(6 66)(7 67)(8 68)(9 19)(10 20)(11 21)(12 22)(13 23)(14 24)(15 17)(16 18)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(31 33)(32 34)(41 73)(42 74)(43 75)(44 76)(45 77)(46 78)(47 79)(48 80)(49 63)(50 64)(51 57)(52 58)(53 59)(54 60)(55 61)(56 62)
(1 17 37 75 57)(2 38 58 18 76)(3 59 77 39 19)(4 78 20 60 40)(5 21 33 79 61)(6 34 62 22 80)(7 63 73 35 23)(8 74 24 64 36)(9 71 53 45 29)(10 54 30 72 46)(11 31 47 55 65)(12 48 66 32 56)(13 67 49 41 25)(14 50 26 68 42)(15 27 43 51 69)(16 44 70 28 52)
(1 17 37 75 57)(2 76 18 58 38)(3 59 77 39 19)(4 40 60 20 78)(5 21 33 79 61)(6 80 22 62 34)(7 63 73 35 23)(8 36 64 24 74)(9 71 53 45 29)(10 46 72 30 54)(11 31 47 55 65)(12 56 32 66 48)(13 67 49 41 25)(14 42 68 26 50)(15 27 43 51 69)(16 52 28 70 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,69)(2,70)(3,71)(4,72)(5,65)(6,66)(7,67)(8,68)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62), (1,17,37,75,57)(2,38,58,18,76)(3,59,77,39,19)(4,78,20,60,40)(5,21,33,79,61)(6,34,62,22,80)(7,63,73,35,23)(8,74,24,64,36)(9,71,53,45,29)(10,54,30,72,46)(11,31,47,55,65)(12,48,66,32,56)(13,67,49,41,25)(14,50,26,68,42)(15,27,43,51,69)(16,44,70,28,52), (1,17,37,75,57)(2,76,18,58,38)(3,59,77,39,19)(4,40,60,20,78)(5,21,33,79,61)(6,80,22,62,34)(7,63,73,35,23)(8,36,64,24,74)(9,71,53,45,29)(10,46,72,30,54)(11,31,47,55,65)(12,56,32,66,48)(13,67,49,41,25)(14,42,68,26,50)(15,27,43,51,69)(16,52,28,70,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,69)(2,70)(3,71)(4,72)(5,65)(6,66)(7,67)(8,68)(9,19)(10,20)(11,21)(12,22)(13,23)(14,24)(15,17)(16,18)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(31,33)(32,34)(41,73)(42,74)(43,75)(44,76)(45,77)(46,78)(47,79)(48,80)(49,63)(50,64)(51,57)(52,58)(53,59)(54,60)(55,61)(56,62), (1,17,37,75,57)(2,38,58,18,76)(3,59,77,39,19)(4,78,20,60,40)(5,21,33,79,61)(6,34,62,22,80)(7,63,73,35,23)(8,74,24,64,36)(9,71,53,45,29)(10,54,30,72,46)(11,31,47,55,65)(12,48,66,32,56)(13,67,49,41,25)(14,50,26,68,42)(15,27,43,51,69)(16,44,70,28,52), (1,17,37,75,57)(2,76,18,58,38)(3,59,77,39,19)(4,40,60,20,78)(5,21,33,79,61)(6,80,22,62,34)(7,63,73,35,23)(8,36,64,24,74)(9,71,53,45,29)(10,46,72,30,54)(11,31,47,55,65)(12,56,32,66,48)(13,67,49,41,25)(14,42,68,26,50)(15,27,43,51,69)(16,52,28,70,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,69),(2,70),(3,71),(4,72),(5,65),(6,66),(7,67),(8,68),(9,19),(10,20),(11,21),(12,22),(13,23),(14,24),(15,17),(16,18),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(31,33),(32,34),(41,73),(42,74),(43,75),(44,76),(45,77),(46,78),(47,79),(48,80),(49,63),(50,64),(51,57),(52,58),(53,59),(54,60),(55,61),(56,62)], [(1,17,37,75,57),(2,38,58,18,76),(3,59,77,39,19),(4,78,20,60,40),(5,21,33,79,61),(6,34,62,22,80),(7,63,73,35,23),(8,74,24,64,36),(9,71,53,45,29),(10,54,30,72,46),(11,31,47,55,65),(12,48,66,32,56),(13,67,49,41,25),(14,50,26,68,42),(15,27,43,51,69),(16,44,70,28,52)], [(1,17,37,75,57),(2,76,18,58,38),(3,59,77,39,19),(4,40,60,20,78),(5,21,33,79,61),(6,80,22,62,34),(7,63,73,35,23),(8,36,64,24,74),(9,71,53,45,29),(10,46,72,30,54),(11,31,47,55,65),(12,56,32,66,48),(13,67,49,41,25),(14,42,68,26,50),(15,27,43,51,69),(16,52,28,70,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

40 conjugacy classes

class 1 2A2B2C4A4B4C4D5A···5F8A···8H10A···10R
order122244445···58···810···10
size1111252525254···425···254···4

40 irreducible representations

dim111111444444
type++++-++-+
imageC1C2C2C4C4C8F5C5⋊C8C2×F5C52⋊C4C525C8C2×C52⋊C4
kernelC2×C525C8C525C8C2×C526C4C526C4C102C5×C10C2×C10C10C10C22C2C2
# reps121228242484

Matrix representation of C2×C525C8 in GL6(𝔽41)

100000
0400000
001000
000100
000010
000001
,
100000
010000
00354000
00364000
00304034
00202077
,
100000
010000
00354000
00364000
00202077
00303440
,
300000
0400000
0000401
002133934
002632380
002533380

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,36,3,20,0,0,40,40,0,20,0,0,0,0,40,7,0,0,0,0,34,7],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,35,36,20,3,0,0,40,40,20,0,0,0,0,0,7,34,0,0,0,0,7,40],[3,0,0,0,0,0,0,40,0,0,0,0,0,0,0,21,26,25,0,0,0,3,32,33,0,0,40,39,38,38,0,0,1,34,0,0] >;

C2×C525C8 in GAP, Magma, Sage, TeX

C_2\times C_5^2\rtimes_5C_8
% in TeX

G:=Group("C2xC5^2:5C8");
// GroupNames label

G:=SmallGroup(400,160);
// by ID

G=gap.SmallGroup(400,160);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,24,50,1444,496,5765,2897]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^5=d^8=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^2,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽